
Carsten Dachsbacher
Computer Graphics Group
Karlsruhe Institute of Technology

Outline
main difference to offline-methods is visibility computation

rasterization instead of raycasting
VPL generation
lighting and shadowing from VPLs

high-quality rendering
bias compensation in screen-space
approximate compensation in participating media rendering

Visibility Computation for VPL Generation
real-time rendering ↔ mostly diffuse scenes ↔ relatively few VPLs (~10³)
if acceleration structure available use ray casting

VPL generation with rasterization
render scene from light
observation: visible surfaces = first intersection of light path

normal

VPL Generation with Rasterization
render scene from light into reflective shadow map [DS05]:
all information available for creating VPLs and continuing paths

single bounce indirect illumination by directly sampling the RSM
importance sampling can easily be added [DS06]

proceed recursively by rendering another RSM

depth position

flux

reflective shadow map

Lighting and Shadowing
many lights can be handled with deferred shading

interleaved sampling (problem: detailed normals/geometry) [Seg06]
hierarchical shading [NW10]
accumulate and filter incident light [SW09]
clustered deferred and forward shading [OBA12]

bottleneck: shadow computation

Shadow Computation
…is the real bottleneck with instant radiosity / many lights methods

exploit temporal coherency [LSKLA07]
sampled visibility

voxelization, e.g. [SS10]
faster shadow maps

Problem Setting
need many shadow maps of low/moderate resolution
rendering the scene many times (transformation, …) is costly

what we need is level-of-detail rendering
point representations are well-suited for fast, approximate renderings
two approaches: simple LOD with no connectivity and
water-tight rendering with point hierarchy

simple
point cloud

hierarchy
of points

Imperfect Shadow Maps
create random sets of point samples (triangle ID + barycentric coords)
4k to 16k points per “shadow map” (global parameter)

Imperfect Shadow Maps
4k to 16k points per “shadow map” (global parameter)
heuristic to reconstruct the surfaces from point samples

without pull-push triangle rasterizationwith pull-push

3D
2D

Imperfect Shadow Maps
comparison of shadow maps for a single point light

triangle rasterization without pull-push with pull-push

Imperfect Shadow Maps
pull-push in image-space: parallel for thousands of shadow maps

without pull-push with pull-push

Imperfect Shadow Maps
… can render thousands of shadow maps in 100ms
… work because errors average out
… require playing with parameters

“perfect” shadow maps imperfect shadow maps

High-Quality Point-based Rendering
create random points on surfaces and create hierarchy
idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size >1 pixel

traverse children

High-Quality Point-based Rendering
create random points on surfaces and create hierarchy
idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size >1 pixel

traverse children

High-Quality Point-based Rendering
create random points on surfaces and create hierarchy
idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size <1 pixel

render point primitive

Micro-Rendering
renders accurate environment maps / depth buffers from point hierarchy
actually developed for final gathering, using CUDA/OpenCL
can be used to create (R)SMs (in 2009: ~16k in 100 ms, each 24² pixels)

Outline
main difference to offline-methods is visibility computation

rasterization instead of raycasting
VPL generation
lighting and shadowing from VPLs

high-quality rendering
bias compensation in screen-space
approximate compensation in participating media rendering

so far: VPL generation, shading and shadowing
we assume to use VPLs to approximate indirect illumination only

image planeimage plane

eyeeye

so far: VPL generation, shading and shadowing
we assume to use VPLs to approximate indirect illumination only

image planeimage plane

eyeeye

so far: VPL generation, shading and shadowing
we assume to use VPLs to approximate indirect illumination only

geometry term:

transport operator:

image planeimage plane

eyeeye

fast rendering with few VPLs

clamping the contribution of nearby VPLs
by bounding the geometry term

reference (slow) rendering clamping VPLs’ contribution

reference (slow) rendering clamping VPLs’ contributionDIFFERENCE

clamping removes short distance light transport.
How do we restore the missing energy?

Bounded Residual

- =

bounded indirect LT:

residual indirect LT:

full LT:

: user-defined bound

Bounded Residual

= +

- =

indirect illumination represented as VPLs ܮ
replaced by accurate indirect illumination ܮ െ ܮ

Bias Compensation [KK04]T ܮ െ ܮ computed with MC integration
can degenerate to path tracing: too expensive for real-time rendering

Reformulated Bias Compensation
re-use the existing (clamped) solution
iteratively apply the residual transport

compute once
apply iteratively

design choice: compute and apply in screen-space

recursive expansion

ܮ െ ܮܮ െ ܮ

Screen-Space Bias Compensation
Algorithm Overview

precomputation
1. distribute VPLs (as before)
2. create an imperfect shadow map for every VPL

rendering
1. create deferred shading buffers
2. apply deferred direct and bounded VPL lighting
3. N-times in screen-space:

compute residual transport and add it to the image

Screen-Space Bias Compensation
Residual Transport Integration (1 iteration)

FOR EACH pixel:
iterate over neighboring pixels

IF
add contribution (with information in G-buffer)

clamping occurs in a close neighborhood only:
close in world space = close in screen-space
we can conservatively estimate a bounding radius
and restrict the integration to it

side view

eyeImage

Shading point x

Sample y

camera view

Shading point x

Sample y

Screen-Space Bias Compensation
Hierarchical Integration

still too many samples (even with the bounding radius)
multi-resolution top-down integration (in spirit of [NW09])

hierarchical approach requires
mip-map chain of the G-Buffer and bounded illumination
discontinuity buffer

deferred shading buffers clamped solution discontinuity buffer

SSBC:

840

0

number of samples (per pixel)

screen space always
means: no information
on hidden surfaces

no SSBC
10.3 FPS

residual light transport

Screen Space Bias Compensation

resultbounded light transport

+ =

2 iterations SSBC1 iteration SSBC
rendered with:

6.4 FPS8.2 FPS
1024x768 at:

(ATI Radeon HD 5870)

compensation only

Comparison to Ground Truth

result

bias compensation [KK04]

CPU ~ 10.9 hours
(8-core, 4GB RAM)

screen-space
bias compensation
(3 steps)

GPU ~ 550 ms
(ATI Radeon HD 5870)

Light Transport in Participating Media
direct light from surface VPLs and
single-scattering from media VPLs (emit according to phase function)
VPLs also generated at scattering events in media
(see [ENSD12] for a step-by-step tutorial)

Light Transport in Participating Media
direct light from surface VPLs and
single-scattering from media VPLs (emit according to phase function)
VPLs also generated at scattering events in media
(see [ENSD12] for a step-by-step tutorial)

Visibility and Transmittance
homogeneous media:

standard shadow map per VPL (compute transmittance)

heterogeneous media:
shadow map plus ray marching or
deep shadow maps [LV00] or
adaptive volumetric SM [SVLL10]

depth0
1

transmittance

Light Transport in Participating Media
direct light from surface VPLs and
single-scattering from media VPLs (emit according to phase function)
increased cost for visibility/transmittance computation

observations to speed up bias compensation
how many compensation steps
heterogeneity vs. homogeneity
assumptions on visibility
approximate bias compensation
without ray casting!

no clamping (approximate) bias compensationclamping

Bias Compensation

Bias Compensation

Bias Compensation
classic bias compensation [RSK08] if prohibitively expensive
similar to surface case: magnitudes of compensation steps drop quickly

clamped 1st comp. ൈ 4 2nd comp. ൈ 16

computed with path tracing (Raab et al.’s method)

Path Vertex Generation
goal: create new path vertices inside bounding region
heterogeneous media: Woodcock tracing (rejection sampling) might
create vertices that have to be omitted

assume locally homogeneous media
(= similar scattering properties in some proximity)

simple to create vertices
only in bounding region
result still correct when
transmittance ߬ computed
with ray marching
see [ENSD12] for details!

Path Vertex Generation
assume media to be locally homogeneous

simple to create vertices only in bounding region
also compute transmittance using averaged scattering coefficients

not correct but very close

Do we have to compute visibility to newly created vertices?
new vertices are close to vertices requiring compensation
what happens if we do not test mutual visibility?
we tried to produce artifacts

vertices must be very close to a thin opaque object
medium must be thin (otherwise sampling through object unlikely)
quadratic decrease of compensation term

Approximate Bias Compensation
VPL generation using ray casting
two compensation steps only
locally-homogeneous assumption

for creating new vertices without rejection
for computing transmittance to new vertices

only transmittance ߬ but no visibility to new vertices
more details in the paper [ENSD12]

Famous Last Words…
many-lights methods work quite well in real-time

bias compensation is feasible for surfaces and media
glossiness for surfaces ↔ anisotropic phase functions for media
for mostly diffuse scenes, for scenes with moderate anisotropic media

isotropic moderate anisotropic strong anisotropic

… about participating media and multiple scattering (MS)
MS does not really add new visual details (single scattering does)
but MS contributes a lot to the total energy (clamping is no option)

and finally: it’s all about visibility computation
rasterization to resolve from-point visibility (VPL generation and use)
rasterization for screen space integration

multiple scatteringsingle scattering

Acknowledgements:
Some slides on SSBC have been created by Jan
Novak. Tobias Ritschel provided images for ISM/MR.

[LV00] Lokovic and Veach, Deep Shadow Maps, SIGGRAPH 2000
[KK04] Kollig and Keller, Illumination in the Presence of Weak Singularities, 2004
[DS05] Dachsbacher and Stamminger, Reflective Shadow Maps, I3D 2005
[Seg06] Segovia et al., Non-interleaved Deferred Shading of Interleaved Sample Patterns, GH 2006
[DS06] Dachsbacher and Stamminger, Splatting of Indirect Illumination, I3D 2006
[LSKLA07] Laine et al., Incremental Instant Radiosity for Real-Time Indirect Illumination, EGSR 2007
[RSK08] Raab et al., Unbiased global illumination with participating media, Monte Carlo and Quasi-Monte
Carlo Methods, 2008
[RGKSDK09] Ritschel et al., Imperfect Shadow Maps for Efficient Computation of Indirect Illumination,
SIGGRAPH Asia 2008
[SW09] Segovia and Wald, Screen Space Spherical Harmonics Filters for Instant Global Illumination,
TechReport Intel, 2009
[ED10] Engelhardt and Dachsbacher, Epipolar Sampling for Shadows and Crepuscular Rays in Participating
Media with Single Scattering, I3D 2010
[REGSKD10] Ritschel et al., Micro-Rendering for Scalable, Parallel Final Gathering, SIGGRAPH Asia 2009
[SS10] Schwarz, Seidel, Fast Parallel Surface and Solid Voxelization on GPUs, SIGGRAPH Asia 2010
[NW10] Nichols and Wyman, Interactive Indirect Illumination Using Adaptive Multiresolution Splatting,
IEEE Transactions on Visualization and Computer Graphics 16(5), 2010
[SVLL10] Salvi et al., Adaptive Volumetric Shadow Maps, EGSR 2010
[NED11] Novak et al., Screen-Space Bias Compensation for Interactive High-Quality Global Illumination
with Virtual Point Lights, I3D 2011
[NNDJ12a] Novak et al., Virtual Ray Lights for Rendering Scenes with Participating Media, SIGGRAPH 2012
[NNDJ12b] Novak et al., Progressive Virtual Beam Lights, EGSR 2012
[ENSD12] Engelhardt et al., Approximate Bias Compensation for Rendering Scenes with Heterogeneous
Participating Media, Pacific Graphics 2012
[OBA12] Olsson et al., Clustered Deferred and Forward Shading, High Performance Graphics 2012

